Lab 14 Part 2 Pulse Accumulation, Port A *Prepare Pulse Accumulator Vector* *From Jump Table \$00CD+\$1* ORG \$0100 SEI LDX #\$0130 STX \$00CE CLI *Load Pulse accumulator with 15 items counted* *number is then subtracted from \$FF or 255* LDAA #\$F0 STAA \$1027 *Prepare Pulse accumulator Control Register* *PACTL \$1026 for falling edge* LDAA #\$40 STAA \$1026 *Prepare timer interrupt mask 2* *TMSK2 \$1024 for pulse accumulator overflow* LDAA #\$20 STAA \$1024 *Continuous loop to display contents of* *Pulse accumulator counter PACNT \$1027* Pulse LDAA \$1027 STAA \$1004 JMP Pulse *Interrupt Service Routine* *When Pulse Accumulator overflows* ORG \$0130 LDY #\$10 LDAA #\$80 STAA \$1004 JSR Slow Spin RORA STAA \$1004 JSR Slow DEY BNE Spin *Reload pulse accumulator* LDAA #\$F0 STAA \$1027 *Clear flag after pulse accumulator overflow* *TFLG2 \$1025 * LDAA #\$20 STAA \$1025 RTI *Delay Subroutine* ORG \$0160 Slow LDX #\$FFFF Lento DEX BNE Lento RTS **END** 1. Connect the LED array to Port B. Connect the following circuit: Typical circuit for 8 LED Array Connected to Port B - 2. Create, assemble, make appropriate comments and save the original program shown on the left. - 3. Execute the program and observe the operation. Depress the button slowly, but sometimes quickly to simulate events occurring at different speeds. - 4. Modify the program so that 10 items are counted and then an interrupt is executed. The interrupt must work in reverse of the interrupt contained in the original program. - 5. List of Registers: - *PACNT, Pulse accumulator counter, address: \$1027* - *PACTL, Pulse accumulator control, address: \$1026* - *TMSK2, Timer interrupt mask 2, address: \$1024* - *TFLG2, Timer interrupt flag 2, address: \$1025*