Lab 14 Part 2 Pulse Accumulation, Port A

Prepare Pulse Accumulator Vector

From Jump Table \$00CD+\$1

ORG \$0100

SEI

LDX #\$0130

STX \$00CE

CLI

Load Pulse accumulator with 15 items counted

number is then subtracted from \$FF or 255

LDAA #\$F0

STAA \$1027

Prepare Pulse accumulator Control Register

PACTL \$1026 for falling edge

LDAA #\$40

STAA \$1026

Prepare timer interrupt mask 2

TMSK2 \$1024 for pulse accumulator overflow

LDAA #\$20

STAA \$1024

Continuous loop to display contents of

Pulse accumulator counter PACNT \$1027

Pulse LDAA \$1027

STAA \$1004

JMP Pulse

Interrupt Service Routine

When Pulse Accumulator overflows

ORG \$0130

LDY #\$10

LDAA #\$80

STAA \$1004

JSR Slow

Spin RORA

STAA \$1004

JSR Slow

DEY

BNE Spin

Reload pulse accumulator

LDAA #\$F0

STAA \$1027

Clear flag after pulse accumulator overflow

*TFLG2 \$1025 *

LDAA #\$20

STAA \$1025

RTI

Delay Subroutine

ORG \$0160

Slow LDX #\$FFFF

Lento DEX

BNE Lento

RTS

END

1. Connect the LED array to Port B. Connect the following circuit:

Typical circuit for 8 LED Array Connected to Port B

- 2. Create, assemble, make appropriate comments and save the original program shown on the left.
- 3. Execute the program and observe the operation. Depress the button slowly, but sometimes quickly to simulate events occurring at different speeds.
- 4. Modify the program so that 10 items are counted and then an interrupt is executed. The interrupt must work in reverse of the interrupt contained in the original program.
- 5. List of Registers:
- *PACNT, Pulse accumulator counter, address: \$1027*
- *PACTL, Pulse accumulator control, address: \$1026*
- *TMSK2, Timer interrupt mask 2, address: \$1024*
- *TFLG2, Timer interrupt flag 2, address: \$1025*