

- 3. Measure the total resistance with a ohmmeter. $R_{eq} =$
- 4. Why does the total resistance decrease?

Once again assemble the circuit in Fig. 5 but do not apply the power.

5. Calculate the total current.
$$I_{total} =$$

$$I_{R1} = \underline{\hspace{1cm}} I_{R2} = \underline{\hspace{1cm}} I_{R3} = \underline{\hspace{1cm}}$$

Connect the ammeter as suggested in Fig.6.

- 7. Apply 10V to the circuit in Fig. 5.
- 8. Measure total current in the circuit. $I_{total} =$
- 9. Measure the current in each branch of the circuit.

$$I_{R1} = \underline{\hspace{1cm}} I_{R2} = \underline{\hspace{1cm}} I_{R3} = \underline{\hspace{1cm}}$$

10. Is the total current equal to the sum of the individual branch currents? How close are the calculated or theoretical values to the measured values?