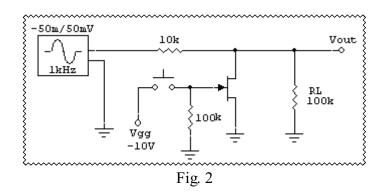
Analog Switch

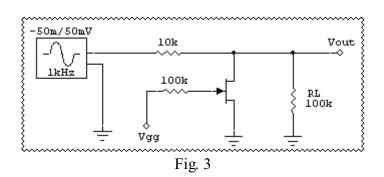
1. Measure the value of R_{DS} as in Fig. 1. Notice that the gate and source are shorted together.

 $R_{DS} =$ _____


- 2. Assemble the circuit in Fig. 2
- 3. Measure the output with the switch open:

Vout =_____

Measure the output with the switch closed:


Vout = _____

4. Explain the operation of this circuit.

Voltage Variable Resistance

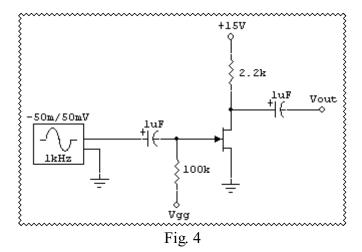
5. Assemble the circuit in Fig. 3 Note that V_{GG} will be 0V or a negative voltage.

6. Let $V_{IN} = 100 \text{ mV}_{PP}$; apply the values of V_{GG} and measure V_{OUT} as shown in Table 1.

V _{GG}	V _{OUT}	r _{ds}

7. Calculate
$$r_{ds}$$
 for each row in Table 1: $r_{ds} = \frac{10k\Omega(V_{OUT})}{V_{IN} - V_{OUT}}$

8. What is the effect on $r_{\rm ds}$ and $V_{\rm OUT}$ as $V_{\rm GG}$ is changed?

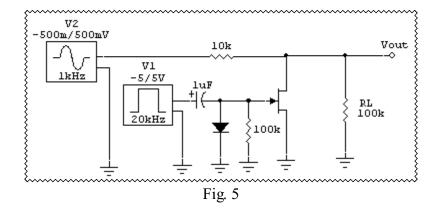

Automatic Gain Control (AGC)

9. Assemble the circuit in Fig. 4.

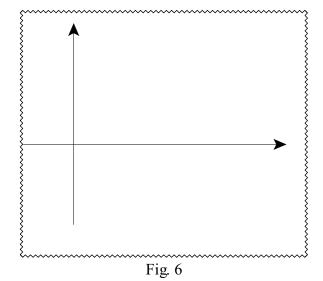
10. Adjust $V_{\rm GG}$ for a maximum output, recall that $V_{\rm GG}$ is 0V or some negative voltage.

11. Adjust V_{GG} until V_{OUT} drop to half of the value from step 10.

 $V_{GG} =$ ____ $V_{OUT} =$ ____


12. What effect does changing V_{GG} have on the output voltage V_{OUT} ?

13. Does the shape of the waveform change as V_{GG} is changed?


JFET Chopper

14. Assemble the circuit in Fig. 5:

Notice that this circuit uses two signal generators: V1 is a square wave, 20kHz at 10 Vpp, while V2 is a sine wave, 1kHz at 1Vpp.

- 15. Adjust the oscilloscope trigger and time base until a steady signal is observed at the output.
- 16. What is the function of the field effect transistor on the sine wave output?
- 17. Sketch the wave observed at V_{OUT} .

[ET 341 Lab 2.pd f]