Driving an LED

- 1. Assemble the circuit in Fig. 1
- 2. Assume that $R_{DS} = 5\Omega$ and that $V_{LED} = 2.25V$
 - 3. Calculate I_D
 - 4. Measure V_{LED} _____
 - 5. Measure I_D
 - 6. Using the value of V_{LED} from step 4, calculate a new value for the current limiting resistor R1 so that I_{D} is approximately 20mA.

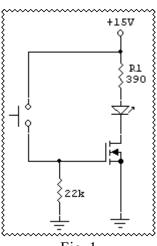
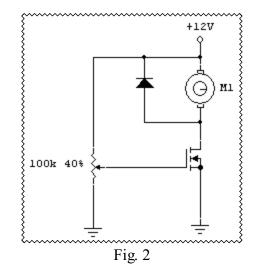



Fig. 1

- 7. Rebuild the circuit using the new value of R1 and measure I_D
- 8. How close is the measured value of I_D to the new specification of 20mA?

D. C. Motor Control

- 1. Assemble the circuit in Fig. 2 using a D.C. motor.
- 2. Vary the potentiometer so that speed of the motor varies.
- 3. Measure $V_{\mbox{\scriptsize GS}}$ for the following conditions:
 - 4. Motor turns on: $V_{GS} =$
 - 5. Motor speed maximum: $V_{GS} =$
 - 6. Motor turns off: $V_{GS} =$

4. Reverse the polarity of the D.C. Motor and repeat steps 4, 5, 6.

Motor turns on:

 $V_{GS} =$

Motor speed maximum:

 $V_{GS} =$

Motor turns off:

 $V_{GS} = \underline{\hspace{1cm}}$

5. Is there a difference in the operation of the motor when the polarity was reversed?

Soft Turn-On (Soft Start)

1. Assemble the circuit in Fig. 3.

2. Calculate the time constant of the resistor-capacitor network connected to the gate. $\tau = RC =$

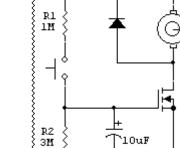


Fig. 3

10uF

+12V

- 3. Connect a voltmeter across the capacitor.
- 4. Close the switch and observe the voltmeter as the voltage rises.
- 5. Use a watch and note the time when the motor starts. t =____
- 6. Open the switch and once again observe the voltmeter and note the time for the motor to stop. t =
- $22 \mu F$ capacitor. Repeat steps 2 to 6. What is the effect of a larger 7. Replace the capacitor with a capacitor on the operation of the circuit?