1. Assemble the circuit in Fig. 1:

- 2. Apply a signal of 20mVpp and at 10kHz.
- 3. Place channel 1 of the oscilloscope at $V_{\rm IN}$ and channel 2 at $V_{\rm OUT}$.
- 4. Measure Vout:
- 5. Calculate the gain of this circuit: $A_V = 20 \log \left(\frac{Vout}{Vin} \right)$ _____dB
- 6. Increase the frequency of the signal generator until the output drops to .707 of the maximum value measured in step 4. $V_{OUT} =$
- 7. Note the frequency at which the value of V_{OUT} dropped; this is the high frequency cut-off: $F_H =$ _____
- 8. Measure the gain at this frequency using the formula from step 5.

- 9. Lower the frequency of the signal generator until V_{OUT} drops to .707 of the maximum value measured in step 4. $V_{OUT} =$
- 10. Note the frequency at which the value of V_{OUT} dropped; this is the low frequency cut-off: $F_L = \underline{\hspace{1cm}}$
- 11. Again, measure the gain at this frequency using the formula from step 5.

$$Av = \underline{\hspace{1cm}}$$
.

12. The results of these measurements is that F_L and F_H are two "corner" frequencies at which V_{OUT} should drop to .707 of the maximum value of V_{OUT} or 3dB less than the maximum gain.

13. Using the measurements from the previous steps, sketch a Bode plot in Fig. 2 and indicate maximum gain, the gain at the corners; upper cut-off frequency (F_H) and lower cut-off frequency (F_L)

Fig. 2

- 14. Modify the original circuit by changing C1 to $.47\,\mu F$ and C4 to $.220\,pF$. The results of these changes are that both the low frequency cut-off and the high frequency cut-off should change.
- 15. Repeat the previous steps to find the new frequency response and sketch a new Bode plot in Fig. 3.
- 16. How have the corner frequencies changed?

Fig. 3