Open Loop Transfer Characteristics

- 1. Assemble the circuit shown in Fig. 1:
- 2. Apply a sine wave of 1kHz at $4V_{PP}$.
- 3. An op-amp operating in open loop has a transfer characteristic of two possible outputs; positive saturation and negative saturation.

- 4. Place channel 1 of the oscilloscope at V_{IN} and channel 2 at V_{OUT} .
- 5. Sketch the both waveforms in Fig. 2 and label the two possible outputs of the op-amp.

Fig. 2

Open Loop Comparator

- 6. Assemble the circuit shown in Fig. 3: Notice that D1 is forward but D2 is reversed biased.
- 7. Use the voltmeter to measure V_{REF} :

$$V_{REF} = \underline{\hspace{1cm}}$$

8. Connect the voltmeter to V_{IN} . Turn the potentiometer up and down so that the LEDs alternate.

8. Measure V_{IN} when the D1 is turned on:

$$V_{IN} = \underline{\hspace{1cm}}$$

9. Measure $V_{\mbox{\tiny IN}}$ when D2 is turned on:

$$V_{IN} = \underline{\hspace{1cm}}$$

10. It seems that if V_{IN} is above the reference voltage, one LED turns on, but if V_{IN} is below the

reference the other LED lights up, what is the reason for this response?

11. Vary the potentiometer and try find a position where neither of the LEDs are on; is this possible?

Open Loop Comparator with Threshold

- 12. Assemble the circuit in Fig. 4: Notice that instead of a reference voltage, we now have a threshold voltage, V_{TH} .
- 13. Calculate V_{TH} : $V_{TH} = ______$
- 14. Use the voltmeter and measure V_{TH} :

$$V_{TH} = \underline{\hspace{1cm}}$$

15. Measure V_{IN} when D1 is turned on:

$$V_{TH} = \underline{\hspace{1cm}}$$

16. Measure V_{IN} when D2 is turned on:

$$V_{TH} = \underline{\hspace{1cm}}$$

- 17. The circuit in Fig. 4 is used to detect if a certain threshold voltage or a "trigger" is present.
- 18. Modify the circuit so that a threshold of -6V is created.
- 19. Use MultiSim to draw your modified circuit. For all the circuits in this lab, be sure to first simulate the operation in MultiSim and then build the circuit in hardware.

