Lab 1 Diodes Introduction

1. Assemble the circuit in Fig. 1:

2. Calculate: $V_D =$ MultiSim: $V_D =$

Calculate: $I_D =$

MultiSim: $I_D =$

Measure: $V_D =$

Measure: $I_D = \underline{\hspace{1cm}}$

3. How do the calculated, MultiSim and measured values compare? What is the relationship between V_D and I_D ?

- 4. Assemble the circuit Fig. 2, (notice that the diode is reversed:)
- 5. Calculate: $V_D =$

MultiSim: $V_D =$

Calculate: $I_D =$

MultiSim: $I_D =$

Measure: $V_D =$

Measure: $I_D = \underline{\hspace{1cm}}$

Fig.2

6. What has happened to the relationship between V_D and I_D ?

7. Once again assemble the circuit in Fig 1 (notice that the value of $V_{\text{\tiny CC}}$ will be changed:)

Fig. 1

8. Apply the values of V_{CC} shown in Table 1 and also measure the values of V_{D} and I_{D} as indicated in the table:

V _{CC}	$V_{\scriptscriptstyle D}$	I_{D}	
1V			
3V			
5V			
10V			

Table 1

- 9. Plot the data from Table 1 in the graph shown in Fig. 3:
- 10. From the graph in Fig. 3, what happens to V_D as V_{CC} is increased? What happens to the current, I_D ? What must be happening to the resistance of the diode?

