- 1. Assemble the circuit if Fig. 1:
- 2. Measure secondary voltage with voltmeter in A.C.: $V_{\text{SEC}} =$

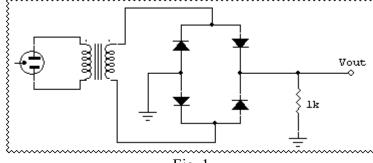
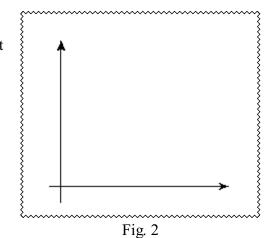
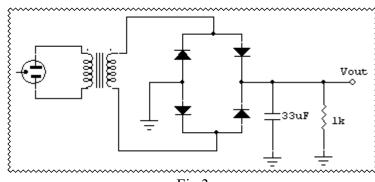



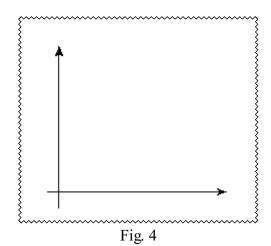
Fig. 1

- 3. Calculate peak voltage: $V_p =$
- 4. Calculate load voltage: $V_L =$
- 5. Calculate D.C. voltage: $V_{DC} =$
- 6. Measure D.C. voltage with voltmeter in D.C.: $V_{DC} =$
- 7. Connect channel 1 of the oscilloscope to V_{OUT} and sketch the output in Fig. 2. Indicate peak voltage and the period of the waveform.

8. Modify the circuit as in Fig. 3:

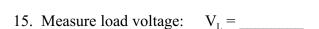
9. Measure V_{OUT} with the voltmeter in D. C. $V_{DC} = \underline{\hspace{1cm}}$




Fig.3

10.	Calculate load current:	$I_{r} =$
		L

11. Measure load current with the ammeter in D.C.:


$$I_L = \underline{\hspace{1cm}}$$

12. Connect channel 1 of the oscilloscope to V_{OUT} and sketch ripple voltage in Fig. 4. Indicate value of peak to peak ripple voltage and the ripple frequency.

13. What is the effect of adding a capacitor to the circuit?

14. Modify the circuit in Fig.3 by increasing the capacitor to $470\,\mu F$:

Measure load current: $I_L =$

16. Again connect the oscilloscope to V_{OUT} and observe the new value of ripple voltage: $V_{RIPPLE} =$

17. What is the effect of increasing capacitance in the circuit?