Part 1. Half-wave rectifier

1. Assemble the circuit in Fig. 1

Fig. 1
2. Measure $\mathrm{V}_{\mathrm{SEC}}$ with the voltmeter in A.C.: $\mathrm{V}_{\mathrm{SEC}}=$ \qquad
3. Calculate V_{P} : $\quad \mathrm{V}_{\mathrm{P}}=$ \qquad
4. Calculate V_{L} : $\quad \mathrm{V}_{\mathrm{L}}=$ \qquad
5. Calculate V_{DC} : $\mathrm{V}_{\mathrm{DC}}=$ \qquad
6. Measure $\mathrm{V}_{\mathrm{OUT}}$ with the voltmeter in D.C.: $\mathrm{V}_{\mathrm{DC}}=$ \qquad
7. How do the calculated and measured values of V_{DC} compare?
8. Connect channel 1 of the oscilloscope to $\mathrm{V}_{\text {out }}$. Sketch the output in Fig. 2 and indicate V_{p} and the period of the waveform.

Fig. 2

Part 2 Full Wave Rectifier

1. Assemble the circuit in Fig. 3
2. Measure $\mathrm{V}_{\mathrm{SEC}}$ with the voltmeter in A.C.:

Fig. 3

$$
V_{S E C}=
$$

\qquad
3. Calculate V_{CT} : $\mathrm{V}_{\mathrm{CT}}=$ \qquad Measure $\mathrm{V}_{\mathrm{CT}}: \quad \mathrm{V}_{\mathrm{CT}}=\quad$ Do these voltages match?
4. Calculate V_{P} : $\quad \mathrm{V}_{\mathrm{P}}=$ \qquad
5. Calculate V_{L} : $\quad \mathrm{V}_{\mathrm{L}}=$ \qquad
6. Calculate V_{DC} : $\mathrm{V}_{\mathrm{DC}}=$ \qquad
7. Measure $\mathrm{V}_{\mathrm{OUT}}$ with the voltmeter in D.C.:

$$
V_{D C}=
$$

\qquad
8. Connect to oscilloscope to $\mathrm{V}_{\text {out }}$. Sketch the output in Fig. 4 and indicate V_{P} and the period of the waveform.

Fig. 4
9. What are the differences between the half-wave and fullwave rectifier circuits?

