1. Assemble the circuit in Fig.1:

Fig. 1

$$
r_{b e}^{\prime}=\frac{25 m V}{I_{C E Q}}=
$$

AC resistance of the collector (little $\mathrm{r}^{\prime} \mathrm{c}$)

$$
r_{c}^{\prime}=R_{c} \| R_{L}=
$$

Gain

$$
A_{v}=\frac{r^{\prime}}{r_{b e}^{\prime}}=
$$

2. Calculate and measure the following values:
$\mathrm{V}_{\mathrm{B}}=$ \qquad
$\mathrm{V}_{\mathrm{E}}=$ \qquad
$\mathrm{I}_{\mathrm{E}} \doteq \mathrm{I}_{\mathrm{C}}=$ \qquad
$\mathrm{V}_{\mathrm{RC}}=$ \qquad
$\mathrm{V}_{\mathrm{C}}=$ \qquad
$\mathrm{V}_{\mathrm{CE}}=$ \qquad
$\mathrm{V}_{\mathrm{BC}}=$ \qquad
Q-point: \qquad
3. Find the DC load line:
$\mathrm{I}_{\mathrm{SAT}}=$ \qquad
$\mathrm{V}_{\text {CEoff }}=$ \qquad
4. AC values:

AC resistance of base-emitter junction (little $\mathrm{r}^{\prime}{ }_{\text {be }}$)
5. AC load line:

AC saturation:

$$
i_{S A T}=I_{C E Q}+\frac{V_{C E Q}}{r_{c}^{\prime}}=
$$

6. Output values:

Maximum peak: $M P=I_{C E Q}\left(r^{\prime}{ }_{c}\right)=$
Maximum peak to peak: $M P P=2(M P)=$
Output power to load: $P_{\text {OUT }}=\frac{M P P^{2}}{8 R_{L}}=$
7. Efficiency calculations:

Current in biasing network:

$$
I_{B I A S}=\frac{V_{C C}}{R+R_{2}}=
$$

Total biasing current and collector current:

$$
I_{D C}=I_{B I A S}+I_{C P Q}=
$$

Total power to stage $\left(\mathrm{P}_{\mathrm{IN}}\right): \quad P_{D C}=V_{C C} I_{D C}=$
Efficiency: $\quad \eta=\frac{P_{\text {OUT }}}{P_{\mathbb{N}}}(100 \%)=$
8. Draw the DC and AC load lines in Fig. 2:

Fig. 2
9. Connect Channel 1 of the oscilloscope to Vin and Channel 2 to Vout. Sketch the signals Fig. 3 and Fig. 4. Do the calculated and measure values match? Is the output signal distorted?

Fig. $3 \mathrm{~V}_{\mathrm{IN}}$

Fig. $4 \mathrm{~V}_{\text {OUT }}$

