Lab 9 Common Emitter Amplifier

- 1. Assemble the circuit in Fig. 1:
- 2. Calculate the following DC values:

$$V_B = \underline{\hspace{1cm}}$$

$$V_E = \underline{\hspace{1cm}}$$

$$I_E \doteq I_C =$$

$$V_{RC} =$$

Is the transistor active?

3. Calculate the following AC values:

(AC resistance of the base-emitter junction) r'be =

Gain: $A_V = \underline{\hspace{1cm}}$

4. Measure the values that were calculated in step 2:

$$V_B = \underline{\hspace{1cm}}$$

$$V_{\scriptscriptstyle E} = \underline{}$$

$$I_E \doteq I_C =$$

$$V_{\text{RC}} = \underline{\hspace{1cm}}$$

5.	Connect channel '	1 of the oscilloscope to	${\sf V}_{\sf IN}$ and channel 2	2 to V_{OUT} .	(Notice that the input
sig	nal is a sine wave	of 10mV_{PP} at 1kHz .)			

Measure the gain: $A_V =$

6. Sketch the input and output waveforms. (Notice that V_{OUT} should be "riding" on V_{C} which is a DC value.) What is the relationship between the two waveforms? How do the calculated and measured values compare?

