- 1. Assemble the following circuit in Fig. 1
- 2. Place channel 1 of the oscilloscope at the input to the capacitor to see $V_{\rm IN}$. Then move channel 1 to the other side of the capacitor or $V_{\rm B}$ which is the base of the transistor to see the effect of clamping. (The oscilloscope coupling should be DC.)
- 3. Place channel 2 of the oscilloscope to Vout.
- 4. Sketch to input and the output signals in Fig. 2.
- 5. Is the transistor on or off?

- 6. Assemble the circuit in Fig. 3:
- 7. Calculate the resonant frequency:
- 8. Calculate the bandwidth:

Fig. 3

- 9. Adjust the signal generator for a maximum output. (Let this be the "center frequency".)
- 10. Increase the frequency until the output drops to .707 of the maximum output. (Let this be the high corner frequency F_{H} .)
- 11. Return to the center frequency and then lower the frequency until the output drops to .707 of the maximum output. (Let this be the low corner frequency F_L.)
- 12. Create a Bode plot in Fig. 4 and indicate the corner frequencies, maximum output and bandwidth.

Fig. 4