ET-386 Lab 15 Port D

68HC11 Communication Lab - TX (Transmit) and RX (Receive) Lab for use with MiniIDE

This lab requires the use of two computers. One computer will act as the Transmitter and the other computer will behave as the Receiver of the message. Additionally, two 68HC11 EVBU boards are required. One board provides the processing power for the Transmitter and the other board provides the computing power for the Receiver. Ensure that MiniIDE is set to the correct assembler of "asm11.exe" and this is done by going into the options menu in the program.

1. Assemble the circuit as follows:

2. We will start off with the TX portion of the lab. Create, assemble, make appropriate comments and save the original program shown below on one computer.

REGBASE EQU \$1000

BAUD EQU \$2B

SCCR1 EQU \$2C

SCCR2 EQU \$2D

SCSR EQU \$2E

SCDR EQU \$2F

ORG \$0100

LDX #REGBASE

LDY #MSG

LDAA #%0011000 ;Set Baud

STAA BAUD, X

CLR SCCR1,X ;Set Xmit

LDAA #%00001000 ;Enable Transmitter

STAA SCCR2,X

XMIT LDAA SCSR,X ;Read Status Reg to Clear Flags

LDAA 0,Y ;Get character of message

CMPA #\$04 ;Check for EOT 0027

BEQ DONE ; If EOT xmit is done

STAA SCDR, X ;xmit the character

WAIT BRCLR SCSR,X #\$01000000 WAIT ;Wait for TC

INY ;point to next character

BRA XMIT ;Do it again

DONE SWI

ORG \$0000

MSG FCC "Hello!"

FCB \$04

- 3. Download the .s19 file into the microprocessor and connect to terminal. In the terminal window of the of the IDE, one should now see activity from the microprocessor.
- 4. For the RX portion of the lab. Create, assemble, make appropriate comments and save the original program shown below on the other computer.

```
REGBASE
            EQU
                  $1000
BAUD EQU
            $2B
SCCR1 EQU
            $2C
SCCR2 EQU
            $2D
SCSR EQU
            $2E
SCDR EQU
            $2F
     ORG
            $0120
     LDX
            #REGBASE
     LDY
            #BUFFER
     LDAA #%0011000
                      ;Set Baud rate for 9600
     STAA BAUD, X
                             ;Set Rcv Mode to 8-bit
     CLR
            SCCR1,X
     LDAA #%00000100 ;Enable Receiver
     STAA SCCR2, X
RCV
     BRCLR SCSR,X #%00100000 RCV ; Wait for data to arrive
     LDAA SCDR, X
     CMPA
           #$0D
     BEQ
            DONE
      STAA 0,Y
      INY
     BRA
            RCV
```

ORG \$01E0

BUFFER RMB 32 ;Reserve 32 bytes

- 5. Download the .s19 file into the microprocessor and connect to terminal. In the terminal window of the of the IDE, one should now see activity from the microprocessor. Additionally, the message of "Hello!" will be displayed in the terminal window in hexadecimal form as "48656C6C6F2021".
- 6. To send a live message from one computer to another, one can start typing in the terminal window and the string will appear on the other computer. When pressing the enter key, a new line will start and one can start typing a new string.